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Abstract: Cloud computing, also known as „on-demand computing‟, is a kind of internet based computing, where 
shared resources, data and information are provided to computers and other devices on demand. As cloud computing 

brings ease and cost-saving features, the security and privacy of data is simultaneously becoming very challenging. For 

providing privacy, many encryption schemes have been proposed. Most of them assume that it provides proper security 

and cannot be hacked by any unauthorized users, but in practice, some authorities may force cloud providers to reveal 

user secrets in some circumstances. Here in this paper we propose an encryption scheme which convinces the fake 

users by providing fake details to the unauthorized users and provide efficient revocation schemes. Thereby we can 

make our data more secure and private and can be protected from unauthorized users. 
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I. INTRODUCTION 

Nowadays, there is an emerging trend that increasingly 
more customers are beginning to use the cloud storage for 

online data storing and sharing[e]. Cloud storage becomes 

popular because of its ease of use and cost-saving 

features.Users can store their data and access their data 

anywhere at any time from the cloud.As cloud storing 

become famous its security is also a big challenge. For 

protecting the data in the cloud we use some encryption 

schemes to encrypt the data thereby we can protect the 

access of data from other users. The most common 

encryption scheme used for encryption is attribute-based 

encryption (ABE). There are numerous ABE schemes that 
have been proposed. 

 

Most of these schemes assume that cloud providers 

provide proper management and can protect their personal 

information from other users. Once the users publish their 

private data to the cloud storage,they lose the direct 

control of their data and have to trust the cloud storage 

service provider. But in some circumstances the cloud 

providers compel to reveal user secrets by using some 

powers or to the Government in case of investigation etc. 

To protect their sensitive data, customers need to encrypt 

the data before sending to the cloud storage. Once the 
cloud storage providers are compromised, all encryption 

schemes lose their effectiveness. 
 

In this work, we offer an encryption scheme and a 

revocation scheme to the cloud storage to protect user data 

from unauthorised users by creating fake user secrets. 

Using deniable encryption, unauthorized user can only 

obtainfake details from user‟s stored cipher text by 

convincing them that the data they get are real, thereby 

they are satisfied and cloud storage would not have to 

reveal any real secrets. In case they know that the given 

data is not real, they have no reason to reject the given 

data because they have no evidence to prove that the given  

 

 

data is not real since they know that their effects will be 
useless. 

 

Here we prefer to use ciphertext policy-attribute based 

encryption (CP-ABE) for encryption. We enhance the 

Waters scheme from prime order bilinear group to 

Composite order bilinear groups. By the subgroup 

decision problem assumption, our scheme enables users to 

be able to provide fake secrets that seem legitimate to 

outside coercers. Here we also use efficient revocation 

along with the encryption schemes i.e., periodically 

change the secret key of the data owner and user and also 
re-encrypt the data stored in the cloud. 

 

II. PREVIOUS WORK ON ABE 

Sahai and Waters first introduced the concept of ABE in 

which data owners can embed how they want to share data 

in terms of encryption. That is, only those who match the 

owner‟s conditions can successfully decrypt stored data. 

We note here that ABE is encryption for privileges, not for 

users. This makes ABE a very useful tool for cloud storage 

services since data sharing is an important feature for such 

services. There are so many cloud storage users that it is 

impractical for data owners to encrypt their data by 
pairwise keys. Moreover, it is also impractical to encrypt 

data many times for many people. With ABE, data owners 

decide only which kind of users can access their encrypted 

data. Users who satisfy the conditions are able to decrypt 

the encrypted data. 
 

There are two types of ABE, CP-ABE and Key-Policy 

ABE (KP-ABE). The difference between these two lies in 

policy checking. KP-ABE is an ABE in which the policy 

is embedded in the user secret key and the attribute set is 

embedded in the ciphertext. Conversely, CP-ABE embeds 

the policy into the ciphertext and the user secret has the 

attribute set. Goyal et al. proposed the first KPABE.  
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They constructed an expressive way to relate any 

monotonic formula as the policy for user secret keys. 

Bethencourt et al. proposed the first CP-ABE. This 

scheme used a tree access structure to express any 

monotonic formula over attributes as the policy in the 

ciphertext. The first fully expressive CP-ABE was 

proposed by Waters, which used Linear Secret Sharing 

Schemes (LSSS) to build a ciphertext policy. Lewko et al. 
enhanced the Waters scheme to a fully secure CP-ABE, 

though with some efficiency loss. Recently, Attrapadung 

et al. constructed a CP-ABE with a constant-size cipher 

text Tysowski et al. designed their CP-ABE scheme for 

resource-constrained users 

 

III. PREVIOUS WORK ON DENIABLE 

ENCRYPTION 

Like normal encryption schemes, deniable encryption can 

be divided into a deniable shared key scheme and a public 

key scheme. Considering the cloud storage scenario, we 
focus our efforts on the deniable public key encryption 

scheme.  

 

There are some important deniable public key encryption 

schemes. Canetti et al. used translucent sets to construct 

deniable encryption schemes. A translucent set is a set 

containing a trapdoor subset. It is easy to randomly pick an 

element from the universal set or from the subset; 

however, without the trapdoor, it is difficult to determine 

if a given element belongs to the subset. Canetti et al. 

showed that any trapdoor permutation can be used to 

construct the translucent set. To build a deniable public 
key encryption scheme from a translucent set, the 

translucent set is the public key and the trapdoor is the 

private key. The translucent set is used to represent one 

encrypted bit. Elements in the subset are represented by 1 

whereas other non-subset elements are represented by 0. 

The sender can encrypt 1 by sending an element in the 

subset, but can claim the element is chosen from the 

universal set (i.e., 0). The above is a basic sender-deniable 

scheme. Canetti et al. also proved that a sender-deniable 

scheme can be transformed to a receiver-deniable scheme 

or a deniable scheme with the help of intermediaries. 
There is research on how best to design a translucent set. 

Durmuth et al. designed the translucent set from the 

saleable encryption. ONeill et al. designed the bi-

translucent set from a lattice, which can build a native bi-

deniable scheme. 

 

In addition to the bitranslucent set, there are other 

proposed approaches to building deniable encryption 

schemes. ONeill et al. proposed a new deniable method 

through a simulatable public key system. The simulatable 

public key system provides an oblivious key generation 

function and an oblivious ciphertext function. When 
sending an encrypted bit, the sender will send a set of 

encrypted data which may be normally encrypted or 

oblivious. Therefore, the sender can claim some sent 

messages are oblivious while actually they are not. The 

idea can be applied to the receiver side such that the 

scheme is a bi-deniable scheme. Gasti et al. proposed 

another deniable scheme in which one publicprivate key 

pair is set up for each user while there are actually two 

pairs. The sender can send a true message encrypted by 

one key with a fake message encrypted by the other key. 

The sender decides which key is released according to the 

coercer‟s identity. Gasti et al. also applied this idea to 

cloud storage services.  

 
Aside from the above deniable schemes, there is research 

investigating the limitations of the deniable schemes. 

Nielsen states that it is impossible to encrypt unbounded 

messages by one short key in non-committing schemes, 

including deniable schemes. Bendlin et al. shows that non 

interactive and fully receiver-deniable schemes cannot be 

achieved simultaneously. We construct our scheme under 

these limitations. 

 

IV. PREVIOUS WORK ON REVOCATION 

SCHEME 
In a fine-grained cryptographic access control system, the 

flexibility of the access policies is mainly restricted by the 

performance of the revocation solution. The simplest 

model for reducing there vocation‟ sconsumption is named 

the lazy revocation scheme (Backeset al., 2005). The main 

idea of this scheme is to postpone the data retrieval, re 

encryption, and re-publication operations until the data are 

updated. For instance, suppose that a DUis revoked to 

access the file F. DO will record this change in local 

storage instead of executing immediately. Lazy revocation 

is suitable for some unstrict situations where the files are 

allowed to remain encrypted withold keys and revocation 
operations take place occasionally(Blanchet and 

Chaudhuri, 2008; Kumbhareet al., 2011). However, lazy 

revocation just evades the revocation problem, which 

cannot support the secure policies enforcing. In most 

actual cases, the new access policy needs to be enforced 

immediately after a revocation takes place. To support 

efficient but secure revocation, some researchers proposed 

key revocation (Yu et al.,2010b; Jahidet al., 2011; Xu and 

Martin, 2012),proxy re-encryption (Liang et al., 2009; 

Libert and Vergnaud, 2011), and over-encryption (di 

Vimercatiet al., 2007) schemes. 
 

V. PRELIMINARIES 

1. Prime Order Bilinear Groups 

Let G and GT be two multiplicative cyclic groups of prime 

order p, with map function e : G × G → GT . Let g be a 

generator of GG. G is a bilinear map group if G and e have 

the following properties: 

• Bilinearity: ∀u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab. 

• Non-degeneracy: e(g, g) 6= 1. 

• Computability: the group action in G and map function e 

can be computed efficiently. 
 

2. ASBE 

ASBE‟s capability of assigning multiple values to the 

same attribute enables it to solve the user revocation 

problem efficiently, which is difficult in CP-ABE. The 

revocation problem can be solved easily by assigning 

different expiration times. The above desirable feature and 
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the recursive key structure is implemented by four 

algorithms they are , Setup, KeyGen, Encrypt, and 

Decrypt: 
 

Setup algorithm (MK, PK) ← Setup (1k): is run by the 

trusted authority or the security administrator. The setup 

algorithm takes as input a security parameter k and outputs 

a master secret key MK and a master public key PK.  

 

Key Generation algorithm (SK) ← Key Gen (MK, ω): 

is run by the trusted authority, and takes as input a set of 

attributes ω and MK. The algorithm outputs a user secret 

key SK associated with the attribute set ω.  

 

Encryption algorithm (CT) ← Encrypt (m, PK, P): is 

run by the encryptor. For encryption the input of the 

algorithm is a message file m, a master public key PK and 

an access control policy P, the output of the algorithm is a 

ciphertext CT encrypted under the access control policy P.  

 

Decryption algorithm (m) ← Decrypt (CT, SK): is run 

by the decryptor. The input of the algorithm is a ciphertext 

CT to be decrypted and a user secret key SK. The output 

of the algorithm is a message m, if the attribute set of the 
secret key satisfies the access policy P under which the 

message was encrypted, or an error message if the 

attribute set of the secret key does not satisfies the access 

policy P under which the message was encrypted. These 

algorithms are essentially similar to those of CP-ABE, 

except some extensions to support recursive key structure. 

The public key and the master key of ASBE are extended 

from CPABE to have components supporting recursive 

key structure. The master key is extended by adding a new 

secret exponent βd for depth. The generated private keys 

are also different in ASBE and CP-ABE. There are 

translating components that enable attributes translation 
between different key sets. The missing part of ASBE is 

the delegation algorithm, which is used in our proposed 

scheme to construct the hierarchical structure. We accept 

the same four algorithms of ASBE, and extend ASBE by 

proposing a new delegation algorithm. 

 

Definition (Bilinear subgroup decision assumption): Let G 

be a 2-cancelling bilinear group generator such that for i = 

1; 2 the output groups Gi and Hi are of prime order pi. We 

define the following distribution: 
 

 
We define the advantage of an algorithm A in solving the 

bilinear subgroup decision assumption to be 

 
 

We say that G satisfies the bilinear subgroup decision 

assumption if   is a negligible 

function of  for any polynomial-time algorithm A. 

The reason the BSD assumption does not reduce to the 

ordinary subgroup decision assumption (with G1;G2 

switched) is that in the latter the challenger is not given 

generators of both G1 and G2. 

 

With these definitions, we can now state the security 

theorem for the generalized Boneh-Sahai- Waters scheme. 

The original proof applies in our more general context. 
 

Theorem : Suppose that G satisfies the subgroup decision 

assumption on the right, the bilinear subgroup decision 

assumption, and the 3-party Di_e-Hellman assumptions on 

the left and right. Then the generalized Boneh-Sahai-

Waters PLBE scheme is secure. 

 

3. Chameleon Hash 

A distinguishing feature of chameleon signature schemes 

is that they are non-transferable, i.e. a signature issued to a 

designated recipient cannot be validated by another party. 
While not universally verifiable, chameleon signatures 

provide non-repudiation: If presented with a false 

signature claim, the signer can prove that the signature is 

forged, while incapable of doing so for legitimate claims. 

Accordingly, the signer‟s refusal to invalidate a signature 

is considered equivalent to her affirmation that the 

signature is valid. 

 

Unlike undeniable signatures, which also provide non-

repudiation and non-transferability, chameleon signatures 

are non-interactive protocols. More precisely, the signer 

can generate the chameleon signature without interacting 
with the designated recipient, and the latter will be able to 

verify the signature without interacting with the former. 

Similarly, if presented with a forged signature, the signer 

can deny its validity by revealing certain values. These 

values will revoke the original signature and the forged 

one simultaneously, and the revocation can be universally 

verified. In other words, the forged-signature denial 

protocol is also non-interactive. There also exist non-

interactive versions of undeniable signatures. Chameleon 

signatures are considerably less complex, at the sacrifice 

of not conferring the signer the ability to engage in non-
transferable secondary proofs of signature (non-)validity. 

Chameleon signatures are based on the well established 

hash-and-sign paradigm, where a chameleon hash function 

is used to compute the cryptographic message digest. A 

chameleon hash function is a trapdoor one-way hash 

function: Without knowledge of the associated trapdoor, 

the chameleon hash function is resistant to the 

computation of pre-images and of collisions. However, 

with knowledge of the trapdoor, collisions are efficiently 

computable.  

 

When a chameleon hash function is used within a hash-
and-sign signature scheme, it permits the party with 

knowledge of the trapdoor to re-use the signature value to 

authenticate other messages of choice. In particular, if the 

hash function is part of the recipient‟s public key, then the 

signature is publicly verifiable by no one other than the 

intended recipient. On the other hand, if the recipient re-
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uses the hash value to obtain a signature on a second 

message, the signer can prove knowledge of a hash 

collision, since the original signed message and the 

claimed signed message have the same hash value. 

Because computing hash collisions is infeasible for the 

signer, possession of such a collision is seen as proof of 

forgery by the signature recipient. 

 

VI. DEFINITION 

A. Deniable CP-ABE Scheme 

Deniable encryption schemes may have different 

properties and we provide an introduction to many of these 

properties below. 

 ad hoc deniability vs. plan-ahead deniability: The 

former can generate a fake message (from the entire 

message space) when coerced, whereas the latter 

requires a predetermined fakemessage for encryption. 

Undoubtedly, all bitwise encryption schemes are ad hoc. 

 sender-, receiver-, and bi-deniability: The prefix here in 
each case implies the role that can fool the coercer with 

convincing fake evidence. In sender-deniable encryption 

schemes and receiver-deniable schemes, it is assumed 

that the other entity cannot be coerced. Bi-deniability 

means both sender and receiver can generate fake 

evidence to pass third-party coercion. 

 full deniability vs. multi-distributional deniability: A 

fully deniable encryption scheme is one in which there 

is only one set of algorithms, i.e., a keygeneration 

algorithm, an encryption algorithm and so on. Senders, 

receivers and coercers know this set of algorithms and a 
sender and a receiver can fool a coercer under this 

condition. As for multi-distributional deniable 

encryption schemes, there are two sets of algorithms, 

one while the other is a deniable set. The outputs of 

algorithms in these two sets are computationally 

indistinguishable. The normal set of algorithms cannot 

be used to fool coercers, whereas the deniable set can be 

used. A sender and a receiver can use the deniable 

algorithm set, but claim that they use the normal 

algorithm set to fool coercers. 

 interactive encryption vs. non-interactive encryption: 

The difference between these two types of encryption is 
that the latter scheme does not need interaction between 

sender and receiver.  

 

According to the above definitions, the ideal deniable 

encryption scheme is ad hoc, full, bi-deniability and non-

interactive deniability; however, there is research focused 

on determining the limitations of the deniable schemes. 

Nielsen stated that it is impossible to encrypt unbounded 

messages by one short key in non-committing schemes, 

including deniable schemes. Since we want our scheme to 

be block wise deniable with a consistent encryption 
environment, we design our scheme to be a plan-ahead 

deniable encryption scheme. Bendlin et al. showed that 

non-interactive and fully receiver deniable properties 

cannot be achieved simultaneously. We prefer our scheme 

to have the non-interactive property for ease of use. 

Therefore, our scheme is multi-distributional. In summary, 

our deniable scheme is planahead, bi-deniable, and multi-

distributional. Below, we provide the definition of this 

kind of deniable CP-ASBE scheme. 

 

Definition (Deniable CP-ASBE): Our plan-ahead, 

bideniable, and multi-distributional CP-ASBE scheme is 

composed of the following algorithms: 
 

 Setup(1_) → (PP,MK): This algorithm takes security 
parameter _ as input and returns public parameter PP 

and system master key MK. 

 KeyGen(MK, S) → SK: Given set of attributes S and 

MK, this algorithm outputs private key SK. 

 Enc(PP,M,T) → CT: This encryption algorithm takes as 

input public parameter PP, message M, and  access tree 

T = (M, _) over the universe of attributes. This 

algorithm encrypts M and outputs a ciphertext CT, 

which can be decrypted by those who possess an 

attribute set that satisfies access tree T. Note that T is 

contained in CT. 

 Dec(CT,SK) → {M,⊥}: This decryption algorithm takes 
as input public parameter PP, private key SK with its 

attribute set S, and ciphertext CT with its access tree T. 
If S satisfies T, then this algorithm returns M; otherwise, 

this algorithm returns ⊥. 

 OpenEnc(PP,CT,M) → PE: This algorithm is for the 

sender to release encryption proof PE for (M,CT). 

 OpenDec(PP, SK,CT,M) → PD: This algorithm is for 

the receiver to release decryption proof PD for (M,CT). 

 Verify(PP,CT,M, PE, PD) → {T, F}: This algorithm is 

used to verify the correctness of PE and PD. 

 DenSetup(1_) → (PP,MK, PK): This algorithm takes 

security parameter _ as input and returns public 

parameters PP, system master key MK, and system 
public key PK. PK is known by all system users and is 

kept secret to outsiders. 

 DenKeyGen(MK, S) → (SK, FK): Given set of 

attributes S and MK, this algorithm outputs private key 

SK as well as FK for the user, where FK will be used for 

generating fake proof later. 

 DenEnc(PP, PK,M,M′,T) → CT′: Aside from the inputs 

of the normal encryption algorithm, this deniable 

encryption algorithm needs public key PK and fake 

message M′. The output ciphertext must be 

indistinguishable from the output of Enc. 

 DenOpenEnc(PP,CT′,M′) → P′ E : This algorithm isfor 

the sender to release encryption proof P′E for fake 

message M′. The output must be indistinguishable from 

the result of OpenEncand must pass the Verify 

algorithm. 

 DenOpenDec(PP, SK, FK,CT′,M′) → P′ D: This 

algorithmis for the receiver to release decryptionproof P′ 

D for fake message M′. The output must 

beindistinguishable from the result of OpenDecandmust 

pass the Verify algorithm. 

 

VII. DENIABLE CP-ABE CONSTRUCTION 

Let  be a bilinear group of prime order p and let g be 

a generator of . Let 
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denote a bilinear map. Let

 be a hash function that maps 

any arbitrary string to a random group element. We will 

use this function to map attributes described as arbitrary 

strings to group elements. 

 

Setup(d = 2). The setup algorithm chooses random 

exponents  
The algorithm sets the public key and master key as: 

PK=

 
 

MK=  
Note that to support key structures of depth d, i will range 

from 1 to d. 

 

KeyGen(MK, A, u). Here u is the identity of a user and A 

= {A0,A1, . . . ,Am} is a key structure. A0 is the set of 

individual attributes in the outer set (i.e. set 0) and A1 to 

Am are sets of attributes at depth 2 that the user has. Let 

Ai = {ai,1, . . . , ai,ni}. That is, ai,j denotes the j-th 

attribute appearing in set Ai, and ni denotes the number of 

attributes in the set Ai. (Note that for different values of (i, 
j), ai,j can be the same attribute.) The key generation 

algorithm chooses a unique random number, r{u} 2 Zp, 

for user u. It then chooses a set of m unique random 

numbers,  , one for each set

. For set A0, r{u} 0 is set to be the 

same as r{u}. It also chooses a set of unique random 

numbers,  one for each  

. 

The issued key is: 
 

 
Note that the operations on the exponents in the above 

equations are modulo the order of the group, which is 

prime. Hence division in the exponent is well-defined. We 

omit the mod for convenience. Elements Ei enable 

translation from r{u}i (i.e., set Ai at depth 2) to r{u} (i.e., 

the outer or parent set A0 at depth 1) at the translating 

nodes. Elements Ei and Ei0 can be combined as Ei/Ei0 to 

enable translation from r{u} i0 (i.e., set Ai0 ) to r{u} i 

(i.e., the set Ai) at the translating nodes. Similarly, for a 
key structure of depth d, there will elements that enable 

translation from a set at depth d to its parent set at depth 

d− 1 and they will use _d and random numbers 

corresponding to the appropriate sets. 
 

Encrypt(PK, M, T ). M is the message, T is an access tree. 

The algorithm associates a polynomial   with each 

node T (including the leaves) in the tree T . These 

polynomials are chosen in the following way in a top-

down manner, starting from the root node R. For each 

internal node T in the tree, the degree d_ of the polynomial 

 is set to be one less than the threshold value k_ of that 

node, that is, . For leaf nodes the 

degree is set to be 0. For the root node R the algorithm 

picks a random  and sets qR(0) = s. Then, it 
chooses dR other points randomly to define the 

polynomial qR completely. For any other node T , it sets 

 and chooses 

d T other points randomly to completely define  . 
Here parent(T ) denotes the parent node of T . Let Y 
denote the set of leaf nodes in T . Let X denote the set of 

translating nodes in the access tree T . Then the ciphertext 

CT returned is as follows: 

 

Translating values  together with   in user keys 

allow translation between sets ata translating node x as 

will be described in the Decrypt function. Note that the 
element 

is the same as  where r denotes the root node. A 

variant of the scheme would 

be where ¯ C is not included in the ciphertext but is only 

released at the discretion of the encrypting user as  . 

This would restrict decrypting users to only use individual 

attributes in the outer set except when explicitly allowed 

by the encrypting user by designating translating nodes.  
 

Decrypt(CT, SKu). Here we describe the most 

straightforward decryption algorithm without regard to 

efficiency. The decryption algorithm is a recursive 

algorithm similar to the tree satisfaction algorithm 

described in Section 4.  
 

The decryption algorithm first runs the tree satisfaction 

algorithm on the access tree with the key structure i.e., T 

(A), and stores the results of each of the recursive calls in 

the access tree T . That is, each node t in the tree is 

associated with a set St of labels that was returned by 
Tt(A). If A does not satisfy the tree T then the decryption 

algorithm returns ?. Otherwise the decryption algorithm 

picks one of the labels, i, from the set returned by T (A) 

and calls a recursive function. 

 

DecryptNode(CT, SKu, t, i) on the root node of the tree. 

Here CT is the ciphertext

, SKu 
is a private key, which is associated with a key structure 

denoted by A, t is a node from T , and i is a label denoting 

a set of A. Note that the ciphertext CT now contains tree 

information that is augmented by the results from T (A). 

DecryptNode(CT, SKu, t, i) is defined as follows. 
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If  , i.e., node t is a leaf node, then 

DecryptNode(CT, SKu, t, i) is defined 

as follows. If  where  then 

DecryptNode(CT, SKu, t, i)  . If 

where  then: 

 
 

Note that set from which the satisfying attribute ai,j was 

picked is implicit in the result 

 (i.e., indicated by r{u}i ). When 

, i.e., node t is a non-leaf node, 
thenDecryptNode(CT, SKu, t, i) proceeds as follows: 

 

1. Compute Bt which is an arbitrary kt sized set of child 

nodes z such that z 2 Bt 

only if either (1) label   or (2) label 

 for some  and z is a translating 

node. If no such set exists then return . 

2. For each node z Bt such that label i Sz call 
DecryptNode(CT, SKu, t, i) 

and store output in Fz. 

3. For each node z Bt such that i0 Sz and 

callDecryptNode(CT, SKu, t, i0) 

store output in F0 . If  then translate F0 to Fz as 
follows: 

 

Otherwise, translate  to Fz as follows: 

 
 

4. Compute Ft using polynomial interpolation in the 

exponent as follows: 

 
 

The output of DecryptNode(CT, SKu, r, i) function on the 

root node r is stored in Fr. If i = 0 we have Fr = e(g, 

g)r{u}·qr(0) = e(g, g)r{u}·s otherwise we have Fr = e(g, 

g)r{u} i ·s. If i 6= 0 then we compute F as follows: 

 
Otherwise F = Fr. The decryption algorithm then computes 

following: 

 
Note how two elements Ei and Ei0 together with a 

translating value  at a node t were used to translate 

between sets i and i0 at node t in step 3. Similarly, note 

how a single element Ei together with a translating value 
was used to translate between set i and the outer set. We 

note that if  then the scheme would become 

insecure as colluding users could transitively translate 

from inner set i to outer set and then from one key to the 

other by using the D elements from their keys. Thus we 

need a unique  for every level that we need to support. 
When using key structures of depth d, translating values, 

 , that help translate between sets at depth d or 
between a set 

at depth d and its parent at depth d − 1 will use . And to 

allow translations across multiple levels at a given node, 

multiple translating values using different   will need 
to be released at that node. 
 

 OpenEnc(PP,C,M) → PE: This algorithm returns two 

coins b0, b1 as proof PE. 

 OpenDec(PP, SK,C,M) → PD: This algorithm 

directly returns SK as proof PD since this is the most 

persuasive proof. 

 Verify(PP,C,M, PE, PD) → {T, F}: To verify PE and 
PD, this algorithm first runs Dec(PP, PD,C) and 

checks if the output is equal to declared input M. 

Then, this algorithm checks PE with correct coins b0, 

b1 derived in the decryption process. If 

bothrequirements are satisfied, this algorithm returns 

T ;otherwise, it returns F. 

 DenSetup( ) → (PP,MSK, PK): This algorithm 

runs Setup( ) and obtains PP. System public key 

PK is 

and system secret key MSK is 

. 

 DenKeyGen(MSK, S) → (SK, FK): This algorithm 

runs KeyGenand obtains SK for S. Next, this 

algorithm picks t′ ∈ZN and generates FK as follows: 
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 DenEnc(PP, PK,M,M′,A =  ) → C′: This 

algorithm prepares  just as the 
Enc algorithm does. This algorithm sets up chameleon 

hash function CH(・, ・). The chameleon hash 

function is determined during encryption. Note that 

without the trapdoor, a chameleon hash is just a one-

way hash function. That is, a sender can claim this is 

just a normal hash function without any trapdoor. 

Output deniable ciphertext C′ will be: 

 
where, 

 
Based on the property of the chameleon hash, the sender 
can easily find tb1 and t1−b1 satisfying the above 

requirements. 

 DenOpenEnc(PP,C′,M′) → P′ E : When the 

sendertries to fool the coercer with the pre-determined 

fake message, this algorithm returns two coins 1−b1, 

1−b2 as its proof P′ E . 

 DenOpenDec(PP, SK, FK,C′,M′) → P′ D: This 

algorithmdirectly returns FK as proof P′ D 

 

User Revocation: Whenever there is a user to be 

invalidated, the system must make sure the invalidated 
user cannot access the associated data files any more. One 

way to solve this problem is to re-encrypt all the 

associated data files used to be accessed by the revoked 

user, but we must also confirm that the other users who 

still have access privileges to these data files can access 

them correctly.We add an attribute expiration-time X to a 

user‟s key, which indicates the time until which the key is 

considered to be valid. Then the policy linked with data 

files can include a check on the attribute expiration-time Y 

as a numerical comparison. The update of user‟s key and 

re-encryption of data files can be done as follows: 
 

Key Update. Suppose that there is a user u, who is 

administrated by the domain authority DAi. DAipreserves 

some state information about u‟s key and adds a new value 

of expiration-time to u‟s existing key when it wants to 

update u‟s key. Then DAicomputes the secret key 

components corresponding to the expiration-time attribute 

and sends them to u. Transmission of the secret key 

components to the user can be accomplished with an out-

of-band channel between DAiand the user. While DAiis 

required to maintain some state information about user‟s 

key, DAiavoids the need to create and distribute the entire 
keys on a frequent basis. This reduces the capacity on 

DAiand saves considerable computing resources. 

 

Data Re-encryption. When the data owner wants to re-

encrypt a data file, he changes the value of expiration-time 

the attribute in the key policy and computes the new 

ciphertext components cyand c‟y, where is the leaf node 

on the access tree corresponding to the expiration-time 

attribute. Then the data owner sends these new ciphertext 

components to the cloud and the cloud service 

 

Definition 6.2 (Bilinear subgroup decision assumption). 

Let G be a 2-cancelling bilinear 

group generator such that for i = 1; 2 the output groups Gi 

and Hi are of prime order pi. We define the following 
distribution: 

 
We define the advantage of an algorithm A in solving the 

bilinear subgroup decision assumption to be 

 
 

We say that G satisfies the bilinear subgroup decision 

assumption if   is a negligible 

function of  for any polynomial-time algorithm A. 
 

The reason the BSD assumption does not reduce to the 

ordinary subgroup decision assumption (with G1;G2 

switched) is that in the latter the challenger is not given 

generators of both G1 and G2. 

 
With these definitions, we can now state the security 

theorem for the generalized Boneh-Sahai- Waters scheme. 

The original proof applies in our more general context. 

 

Theorem 6.3. Suppose that G satisfies the subgroup 

decision assumption on the right, the bilinear subgroup 

decision assumption, and the 3-party Di_e-Hellman 

assumptions on the left and right. Then the generalized 

Boneh-Sahai-Waters PLBE scheme is secure. 

 

Definition 7 (Deniable CP-ASBE): Our plan-ahead, 

bideniable, and multi-distributional CP-ASBE scheme is 
composed of the following algorithms: 

 

 Setup(1_) → (PP,MK): This algorithm takes security 

parameter _ as input and returns public parameter PP 

and system master key MK. 

 KeyGen(MK, S) → SK: Given set of attributes S and 

MK, this algorithm outputs private key SK. 

 Enc(PP,M,T) → CT: This encryption algorithm takes 

as input public parameter PP, message M, and  access 

tree T = (M, _) over the universe of attributes. This 

algorithm encrypts M and outputs a ciphertext CT, 
which can be decrypted by those who possess an 

attribute set that satisfies access tree T. Note that T is 

contained in CT. 

 Dec(CT,SK) → {M,⊥}: This decryption algorithm 
takes as input public parameter PP, private key SK 

with its attribute set S, and ciphertext CT with its 

access tree T. If S satisfies T, then this algorithm 

returns M; otherwise, this algorithm returns ⊥. 



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 5, Issue 3, March 2016 

 

Copyright to IJARCCE                                                  DOI 10.17148/IJARCCE.2016.5334                                              131 

 OpenEnc(PP,CT,M) → PE: This algorithm is for the 

sender to release encryption proof PE for (M,CT). 

 OpenDec(PP, SK,CT,M) → PD: This algorithm is for 

the receiver to release decryption proof PD for 

(M,CT). 

 Verify(PP,CT,M, PE, PD) → {T, F}: This algorithm 

is used to verify the correctness of PE and PD. 

 DenSetup(1_) → (PP,MK, PK): This algorithm takes 
security parameter _ as input and returns public 

parameters PP, system master key MK, and system 

public key PK. PK is known by all system users and is 

kept secret to outsiders. 

 DenKeyGen(MK, S) → (SK, FK): Given set of 

attributes S and MK, this algorithm outputs private 

key SK as well as FK for the user, where FK will be 

used for generating fake proof later. 

 DenEnc(PP, PK,M,M′,T) → CT′: Aside from the 

inputs of the normal encryption algorithm, this 

deniable encryption algorithm needs public key PK 
and fake message M′. The output ciphertext must be 

indistinguishable from the output of Enc. 

 DenOpenEnc(PP,CT′,M′) → P′ E : This algorithm 

isfor the sender to release encryption proof P′ 

E for fake message M′. The output must be 

indistinguishable from the result of OpenEncand 

must pass the Verify algorithm. 

 DenOpenDec(PP, SK, FK,CT′,M′) → P′ D: This 

algorithmis for the receiver to release decryptionproof 

P′ D for fake message M′. The output must 

beindistinguishable from the result of 
OpenDecandmust pass the Verify algorithm. 

 

VIII.CONCLUSION 

ASBE‟s capability of assigning multiple values to the 

same attribute enables it to solve the user revocation 

problem efficiently, which is difficult in CP-ABE. The 

revocation problem can be solved easily by assigning 

different expiration times. The above desirable feature and 

the recursive key structure is implemented by four 

algorithms they are , Setup, KeyGen, Encrypt, and 

Decrypt: 
 

Setup algorithm (MK, PK) ← Setup (1k): is run by the 

trusted authority or the security administrator. The setup 

algorithm takes as input a security parameter k and outputs 

a master secret key MK and a master public key PK.  
 

Key Generation algorithm (SK) ← Key Gen (MK, ω): 

is run by the trusted authority, and takes as input a set of 

attributes ω and MK. The algorithm outputs a user secret 

key SK associated with the attribute set ω.  

 

Encryption algorithm (CT) ← Encrypt (m, PK, P): is 

run by the encryptor. For encryption the input of the 

algorithm is a message file m, a master public key PK and 

an access control policy P, the output of the algorithm is a 

ciphertext CT encrypted under the access control policy P.  

 
Decryption algorithm (m) ← Decrypt (CT, SK): is run 

by the decryptor. The input of the algorithm is a ciphertext 

CT to be decrypted and a user secret key SK. The output 

of the algorithm is a message m, if the attribute set of the 

secret key satisfies the access policy P under which the 

message was encrypted, or an error message if the 

attribute set of the secret key does not satisfies the access 

policy P under which the message was encrypted. These 

algorithms are essentially similar to those of CP-ABE, 

except some extensions to support recursive key structure. 
The public key and the master key of ASBE are extended 

from CPABE to have components supporting recursive 

key structure. The master key is extended by adding a new 

secret exponent βd for depth. The generated private keys 

are also different in ASBE and CP-ABE. There are 

translating components that enable attributes translation 

between different key sets. The missing part of ASBE is 

the delegation algorithm, which is used in our proposed 

scheme to construct the hierarchical structure. We accept 

the same four algorithms of ASBE, and extend ASBE by 

proposing a new delegation algorithm. 
 

REFERENCES 
[1]. A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in 

Eurocrypt, 2005, pp. 457–473. 

[2]. V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based 

encryption for fine-grained access control of encrypted data,” in 

ACM Conference on Computer and Communications Security, 

2006, pp. 89–98. 

[3]. J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy 

attribute-based encryption,” in IEEE Symposium on Security 

andPrivacy, 2007, pp. 321–334. 

[4]. B. Waters, “Ciphertext-policy attribute-based encryption: An 

expressive, efficient, and provably secure realization,” in Public 

KeyCryptography, 2011, pp. 53–70. 

[5]. A. Sahai, H. Seyalioglu, and B. Waters, “Dynamic credentials and 

ciphertext delegation for attribute-based encryption,” in Crypto, 

2012, pp. 199–217. 

 


