
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5334 124

Secure Cloud Storage via Deniable Attribute

Based Encryption with Efficient Revocation

Aswathy S
1
, Thahsin V P

1
, Veena Gopakumar

1
, Suja Rani

2

Students, Information Technology, College of Engineering Perumon, Kollam, India1

Journal Guide, Information Technology, College Of Engineering Perumon, Kollam, India2

Abstract: Cloud computing, also known as „on-demand computing‟, is a kind of internet based computing, where
shared resources, data and information are provided to computers and other devices on demand. As cloud computing

brings ease and cost-saving features, the security and privacy of data is simultaneously becoming very challenging. For

providing privacy, many encryption schemes have been proposed. Most of them assume that it provides proper security

and cannot be hacked by any unauthorized users, but in practice, some authorities may force cloud providers to reveal

user secrets in some circumstances. Here in this paper we propose an encryption scheme which convinces the fake

users by providing fake details to the unauthorized users and provide efficient revocation schemes. Thereby we can

make our data more secure and private and can be protected from unauthorized users.

Keywords: ABE, CP-ABE, KP-ABE, LSSS.

I. INTRODUCTION

Nowadays, there is an emerging trend that increasingly
more customers are beginning to use the cloud storage for

online data storing and sharing[e]. Cloud storage becomes

popular because of its ease of use and cost-saving

features.Users can store their data and access their data

anywhere at any time from the cloud.As cloud storing

become famous its security is also a big challenge. For

protecting the data in the cloud we use some encryption

schemes to encrypt the data thereby we can protect the

access of data from other users. The most common

encryption scheme used for encryption is attribute-based

encryption (ABE). There are numerous ABE schemes that
have been proposed.

Most of these schemes assume that cloud providers

provide proper management and can protect their personal

information from other users. Once the users publish their

private data to the cloud storage,they lose the direct

control of their data and have to trust the cloud storage

service provider. But in some circumstances the cloud

providers compel to reveal user secrets by using some

powers or to the Government in case of investigation etc.

To protect their sensitive data, customers need to encrypt

the data before sending to the cloud storage. Once the
cloud storage providers are compromised, all encryption

schemes lose their effectiveness.

In this work, we offer an encryption scheme and a

revocation scheme to the cloud storage to protect user data

from unauthorised users by creating fake user secrets.

Using deniable encryption, unauthorized user can only

obtainfake details from user‟s stored cipher text by

convincing them that the data they get are real, thereby

they are satisfied and cloud storage would not have to

reveal any real secrets. In case they know that the given

data is not real, they have no reason to reject the given

data because they have no evidence to prove that the given

data is not real since they know that their effects will be
useless.

Here we prefer to use ciphertext policy-attribute based

encryption (CP-ABE) for encryption. We enhance the

Waters scheme from prime order bilinear group to

Composite order bilinear groups. By the subgroup

decision problem assumption, our scheme enables users to

be able to provide fake secrets that seem legitimate to

outside coercers. Here we also use efficient revocation

along with the encryption schemes i.e., periodically

change the secret key of the data owner and user and also
re-encrypt the data stored in the cloud.

II. PREVIOUS WORK ON ABE

Sahai and Waters first introduced the concept of ABE in

which data owners can embed how they want to share data

in terms of encryption. That is, only those who match the

owner‟s conditions can successfully decrypt stored data.

We note here that ABE is encryption for privileges, not for

users. This makes ABE a very useful tool for cloud storage

services since data sharing is an important feature for such

services. There are so many cloud storage users that it is

impractical for data owners to encrypt their data by
pairwise keys. Moreover, it is also impractical to encrypt

data many times for many people. With ABE, data owners

decide only which kind of users can access their encrypted

data. Users who satisfy the conditions are able to decrypt

the encrypted data.

There are two types of ABE, CP-ABE and Key-Policy

ABE (KP-ABE). The difference between these two lies in

policy checking. KP-ABE is an ABE in which the policy

is embedded in the user secret key and the attribute set is

embedded in the ciphertext. Conversely, CP-ABE embeds

the policy into the ciphertext and the user secret has the

attribute set. Goyal et al. proposed the first KPABE.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5334 125

They constructed an expressive way to relate any

monotonic formula as the policy for user secret keys.

Bethencourt et al. proposed the first CP-ABE. This

scheme used a tree access structure to express any

monotonic formula over attributes as the policy in the

ciphertext. The first fully expressive CP-ABE was

proposed by Waters, which used Linear Secret Sharing

Schemes (LSSS) to build a ciphertext policy. Lewko et al.
enhanced the Waters scheme to a fully secure CP-ABE,

though with some efficiency loss. Recently, Attrapadung

et al. constructed a CP-ABE with a constant-size cipher

text Tysowski et al. designed their CP-ABE scheme for

resource-constrained users

III. PREVIOUS WORK ON DENIABLE

ENCRYPTION

Like normal encryption schemes, deniable encryption can

be divided into a deniable shared key scheme and a public

key scheme. Considering the cloud storage scenario, we
focus our efforts on the deniable public key encryption

scheme.

There are some important deniable public key encryption

schemes. Canetti et al. used translucent sets to construct

deniable encryption schemes. A translucent set is a set

containing a trapdoor subset. It is easy to randomly pick an

element from the universal set or from the subset;

however, without the trapdoor, it is difficult to determine

if a given element belongs to the subset. Canetti et al.

showed that any trapdoor permutation can be used to

construct the translucent set. To build a deniable public
key encryption scheme from a translucent set, the

translucent set is the public key and the trapdoor is the

private key. The translucent set is used to represent one

encrypted bit. Elements in the subset are represented by 1

whereas other non-subset elements are represented by 0.

The sender can encrypt 1 by sending an element in the

subset, but can claim the element is chosen from the

universal set (i.e., 0). The above is a basic sender-deniable

scheme. Canetti et al. also proved that a sender-deniable

scheme can be transformed to a receiver-deniable scheme

or a deniable scheme with the help of intermediaries.
There is research on how best to design a translucent set.

Durmuth et al. designed the translucent set from the

saleable encryption. ONeill et al. designed the bi-

translucent set from a lattice, which can build a native bi-

deniable scheme.

In addition to the bitranslucent set, there are other

proposed approaches to building deniable encryption

schemes. ONeill et al. proposed a new deniable method

through a simulatable public key system. The simulatable

public key system provides an oblivious key generation

function and an oblivious ciphertext function. When
sending an encrypted bit, the sender will send a set of

encrypted data which may be normally encrypted or

oblivious. Therefore, the sender can claim some sent

messages are oblivious while actually they are not. The

idea can be applied to the receiver side such that the

scheme is a bi-deniable scheme. Gasti et al. proposed

another deniable scheme in which one publicprivate key

pair is set up for each user while there are actually two

pairs. The sender can send a true message encrypted by

one key with a fake message encrypted by the other key.

The sender decides which key is released according to the

coercer‟s identity. Gasti et al. also applied this idea to

cloud storage services.

Aside from the above deniable schemes, there is research

investigating the limitations of the deniable schemes.

Nielsen states that it is impossible to encrypt unbounded

messages by one short key in non-committing schemes,

including deniable schemes. Bendlin et al. shows that non

interactive and fully receiver-deniable schemes cannot be

achieved simultaneously. We construct our scheme under

these limitations.

IV. PREVIOUS WORK ON REVOCATION

SCHEME
In a fine-grained cryptographic access control system, the

flexibility of the access policies is mainly restricted by the

performance of the revocation solution. The simplest

model for reducing there vocation‟ sconsumption is named

the lazy revocation scheme (Backeset al., 2005). The main

idea of this scheme is to postpone the data retrieval, re

encryption, and re-publication operations until the data are

updated. For instance, suppose that a DUis revoked to

access the file F. DO will record this change in local

storage instead of executing immediately. Lazy revocation

is suitable for some unstrict situations where the files are

allowed to remain encrypted withold keys and revocation
operations take place occasionally(Blanchet and

Chaudhuri, 2008; Kumbhareet al., 2011). However, lazy

revocation just evades the revocation problem, which

cannot support the secure policies enforcing. In most

actual cases, the new access policy needs to be enforced

immediately after a revocation takes place. To support

efficient but secure revocation, some researchers proposed

key revocation (Yu et al.,2010b; Jahidet al., 2011; Xu and

Martin, 2012),proxy re-encryption (Liang et al., 2009;

Libert and Vergnaud, 2011), and over-encryption (di

Vimercatiet al., 2007) schemes.

V. PRELIMINARIES

1. Prime Order Bilinear Groups

Let G and GT be two multiplicative cyclic groups of prime

order p, with map function e : G × G → GT . Let g be a

generator of GG. G is a bilinear map group if G and e have

the following properties:

• Bilinearity: ∀u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab.

• Non-degeneracy: e(g, g) 6= 1.

• Computability: the group action in G and map function e

can be computed efficiently.

2. ASBE

ASBE‟s capability of assigning multiple values to the

same attribute enables it to solve the user revocation

problem efficiently, which is difficult in CP-ABE. The

revocation problem can be solved easily by assigning

different expiration times. The above desirable feature and

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5334 126

the recursive key structure is implemented by four

algorithms they are , Setup, KeyGen, Encrypt, and

Decrypt:

Setup algorithm (MK, PK) ← Setup (1k): is run by the

trusted authority or the security administrator. The setup

algorithm takes as input a security parameter k and outputs

a master secret key MK and a master public key PK.

Key Generation algorithm (SK) ← Key Gen (MK, ω):

is run by the trusted authority, and takes as input a set of

attributes ω and MK. The algorithm outputs a user secret

key SK associated with the attribute set ω.

Encryption algorithm (CT) ← Encrypt (m, PK, P): is

run by the encryptor. For encryption the input of the

algorithm is a message file m, a master public key PK and

an access control policy P, the output of the algorithm is a

ciphertext CT encrypted under the access control policy P.

Decryption algorithm (m) ← Decrypt (CT, SK): is run

by the decryptor. The input of the algorithm is a ciphertext

CT to be decrypted and a user secret key SK. The output

of the algorithm is a message m, if the attribute set of the
secret key satisfies the access policy P under which the

message was encrypted, or an error message if the

attribute set of the secret key does not satisfies the access

policy P under which the message was encrypted. These

algorithms are essentially similar to those of CP-ABE,

except some extensions to support recursive key structure.

The public key and the master key of ASBE are extended

from CPABE to have components supporting recursive

key structure. The master key is extended by adding a new

secret exponent βd for depth. The generated private keys

are also different in ASBE and CP-ABE. There are

translating components that enable attributes translation
between different key sets. The missing part of ASBE is

the delegation algorithm, which is used in our proposed

scheme to construct the hierarchical structure. We accept

the same four algorithms of ASBE, and extend ASBE by

proposing a new delegation algorithm.

Definition (Bilinear subgroup decision assumption): Let G

be a 2-cancelling bilinear group generator such that for i =

1; 2 the output groups Gi and Hi are of prime order pi. We

define the following distribution:

We define the advantage of an algorithm A in solving the

bilinear subgroup decision assumption to be

We say that G satisfies the bilinear subgroup decision

assumption if is a negligible

function of for any polynomial-time algorithm A.

The reason the BSD assumption does not reduce to the

ordinary subgroup decision assumption (with G1;G2

switched) is that in the latter the challenger is not given

generators of both G1 and G2.

With these definitions, we can now state the security

theorem for the generalized Boneh-Sahai- Waters scheme.

The original proof applies in our more general context.

Theorem : Suppose that G satisfies the subgroup decision

assumption on the right, the bilinear subgroup decision

assumption, and the 3-party Di_e-Hellman assumptions on

the left and right. Then the generalized Boneh-Sahai-

Waters PLBE scheme is secure.

3. Chameleon Hash

A distinguishing feature of chameleon signature schemes

is that they are non-transferable, i.e. a signature issued to a

designated recipient cannot be validated by another party.
While not universally verifiable, chameleon signatures

provide non-repudiation: If presented with a false

signature claim, the signer can prove that the signature is

forged, while incapable of doing so for legitimate claims.

Accordingly, the signer‟s refusal to invalidate a signature

is considered equivalent to her affirmation that the

signature is valid.

Unlike undeniable signatures, which also provide non-

repudiation and non-transferability, chameleon signatures

are non-interactive protocols. More precisely, the signer

can generate the chameleon signature without interacting
with the designated recipient, and the latter will be able to

verify the signature without interacting with the former.

Similarly, if presented with a forged signature, the signer

can deny its validity by revealing certain values. These

values will revoke the original signature and the forged

one simultaneously, and the revocation can be universally

verified. In other words, the forged-signature denial

protocol is also non-interactive. There also exist non-

interactive versions of undeniable signatures. Chameleon

signatures are considerably less complex, at the sacrifice

of not conferring the signer the ability to engage in non-
transferable secondary proofs of signature (non-)validity.

Chameleon signatures are based on the well established

hash-and-sign paradigm, where a chameleon hash function

is used to compute the cryptographic message digest. A

chameleon hash function is a trapdoor one-way hash

function: Without knowledge of the associated trapdoor,

the chameleon hash function is resistant to the

computation of pre-images and of collisions. However,

with knowledge of the trapdoor, collisions are efficiently

computable.

When a chameleon hash function is used within a hash-
and-sign signature scheme, it permits the party with

knowledge of the trapdoor to re-use the signature value to

authenticate other messages of choice. In particular, if the

hash function is part of the recipient‟s public key, then the

signature is publicly verifiable by no one other than the

intended recipient. On the other hand, if the recipient re-

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5334 127

uses the hash value to obtain a signature on a second

message, the signer can prove knowledge of a hash

collision, since the original signed message and the

claimed signed message have the same hash value.

Because computing hash collisions is infeasible for the

signer, possession of such a collision is seen as proof of

forgery by the signature recipient.

VI. DEFINITION

A. Deniable CP-ABE Scheme

Deniable encryption schemes may have different

properties and we provide an introduction to many of these

properties below.

 ad hoc deniability vs. plan-ahead deniability: The

former can generate a fake message (from the entire

message space) when coerced, whereas the latter

requires a predetermined fakemessage for encryption.

Undoubtedly, all bitwise encryption schemes are ad hoc.

 sender-, receiver-, and bi-deniability: The prefix here in
each case implies the role that can fool the coercer with

convincing fake evidence. In sender-deniable encryption

schemes and receiver-deniable schemes, it is assumed

that the other entity cannot be coerced. Bi-deniability

means both sender and receiver can generate fake

evidence to pass third-party coercion.

 full deniability vs. multi-distributional deniability: A

fully deniable encryption scheme is one in which there

is only one set of algorithms, i.e., a keygeneration

algorithm, an encryption algorithm and so on. Senders,

receivers and coercers know this set of algorithms and a
sender and a receiver can fool a coercer under this

condition. As for multi-distributional deniable

encryption schemes, there are two sets of algorithms,

one while the other is a deniable set. The outputs of

algorithms in these two sets are computationally

indistinguishable. The normal set of algorithms cannot

be used to fool coercers, whereas the deniable set can be

used. A sender and a receiver can use the deniable

algorithm set, but claim that they use the normal

algorithm set to fool coercers.

 interactive encryption vs. non-interactive encryption:

The difference between these two types of encryption is
that the latter scheme does not need interaction between

sender and receiver.

According to the above definitions, the ideal deniable

encryption scheme is ad hoc, full, bi-deniability and non-

interactive deniability; however, there is research focused

on determining the limitations of the deniable schemes.

Nielsen stated that it is impossible to encrypt unbounded

messages by one short key in non-committing schemes,

including deniable schemes. Since we want our scheme to

be block wise deniable with a consistent encryption
environment, we design our scheme to be a plan-ahead

deniable encryption scheme. Bendlin et al. showed that

non-interactive and fully receiver deniable properties

cannot be achieved simultaneously. We prefer our scheme

to have the non-interactive property for ease of use.

Therefore, our scheme is multi-distributional. In summary,

our deniable scheme is planahead, bi-deniable, and multi-

distributional. Below, we provide the definition of this

kind of deniable CP-ASBE scheme.

Definition (Deniable CP-ASBE): Our plan-ahead,

bideniable, and multi-distributional CP-ASBE scheme is

composed of the following algorithms:

 Setup(1_) → (PP,MK): This algorithm takes security
parameter _ as input and returns public parameter PP

and system master key MK.

 KeyGen(MK, S) → SK: Given set of attributes S and

MK, this algorithm outputs private key SK.

 Enc(PP,M,T) → CT: This encryption algorithm takes as

input public parameter PP, message M, and access tree

T = (M, _) over the universe of attributes. This

algorithm encrypts M and outputs a ciphertext CT,

which can be decrypted by those who possess an

attribute set that satisfies access tree T. Note that T is

contained in CT.

 Dec(CT,SK) → {M,⊥}: This decryption algorithm takes
as input public parameter PP, private key SK with its

attribute set S, and ciphertext CT with its access tree T.
If S satisfies T, then this algorithm returns M; otherwise,

this algorithm returns ⊥.

 OpenEnc(PP,CT,M) → PE: This algorithm is for the

sender to release encryption proof PE for (M,CT).

 OpenDec(PP, SK,CT,M) → PD: This algorithm is for

the receiver to release decryption proof PD for (M,CT).

 Verify(PP,CT,M, PE, PD) → {T, F}: This algorithm is

used to verify the correctness of PE and PD.

 DenSetup(1_) → (PP,MK, PK): This algorithm takes

security parameter _ as input and returns public

parameters PP, system master key MK, and system
public key PK. PK is known by all system users and is

kept secret to outsiders.

 DenKeyGen(MK, S) → (SK, FK): Given set of

attributes S and MK, this algorithm outputs private key

SK as well as FK for the user, where FK will be used for

generating fake proof later.

 DenEnc(PP, PK,M,M′,T) → CT′: Aside from the inputs

of the normal encryption algorithm, this deniable

encryption algorithm needs public key PK and fake

message M′. The output ciphertext must be

indistinguishable from the output of Enc.

 DenOpenEnc(PP,CT′,M′) → P′ E : This algorithm isfor

the sender to release encryption proof P′E for fake

message M′. The output must be indistinguishable from

the result of OpenEncand must pass the Verify

algorithm.

 DenOpenDec(PP, SK, FK,CT′,M′) → P′ D: This

algorithmis for the receiver to release decryptionproof P′

D for fake message M′. The output must

beindistinguishable from the result of OpenDecandmust

pass the Verify algorithm.

VII. DENIABLE CP-ABE CONSTRUCTION

Let be a bilinear group of prime order p and let g be

a generator of . Let

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5334 128

denote a bilinear map. Let

 be a hash function that maps

any arbitrary string to a random group element. We will

use this function to map attributes described as arbitrary

strings to group elements.

Setup(d = 2). The setup algorithm chooses random

exponents
The algorithm sets the public key and master key as:

PK=

MK=
Note that to support key structures of depth d, i will range

from 1 to d.

KeyGen(MK, A, u). Here u is the identity of a user and A

= {A0,A1, . . . ,Am} is a key structure. A0 is the set of

individual attributes in the outer set (i.e. set 0) and A1 to

Am are sets of attributes at depth 2 that the user has. Let

Ai = {ai,1, . . . , ai,ni}. That is, ai,j denotes the j-th

attribute appearing in set Ai, and ni denotes the number of

attributes in the set Ai. (Note that for different values of (i,
j), ai,j can be the same attribute.) The key generation

algorithm chooses a unique random number, r{u} 2 Zp,

for user u. It then chooses a set of m unique random

numbers, , one for each set

. For set A0, r{u} 0 is set to be the

same as r{u}. It also chooses a set of unique random

numbers, one for each

.

The issued key is:

Note that the operations on the exponents in the above

equations are modulo the order of the group, which is

prime. Hence division in the exponent is well-defined. We

omit the mod for convenience. Elements Ei enable

translation from r{u}i (i.e., set Ai at depth 2) to r{u} (i.e.,

the outer or parent set A0 at depth 1) at the translating

nodes. Elements Ei and Ei0 can be combined as Ei/Ei0 to

enable translation from r{u} i0 (i.e., set Ai0) to r{u} i

(i.e., the set Ai) at the translating nodes. Similarly, for a
key structure of depth d, there will elements that enable

translation from a set at depth d to its parent set at depth

d− 1 and they will use _d and random numbers

corresponding to the appropriate sets.

Encrypt(PK, M, T). M is the message, T is an access tree.

The algorithm associates a polynomial with each

node T (including the leaves) in the tree T . These

polynomials are chosen in the following way in a top-

down manner, starting from the root node R. For each

internal node T in the tree, the degree d_ of the polynomial

 is set to be one less than the threshold value k_ of that

node, that is, . For leaf nodes the

degree is set to be 0. For the root node R the algorithm

picks a random and sets qR(0) = s. Then, it
chooses dR other points randomly to define the

polynomial qR completely. For any other node T , it sets

 and chooses

d T other points randomly to completely define .
Here parent(T) denotes the parent node of T . Let Y
denote the set of leaf nodes in T . Let X denote the set of

translating nodes in the access tree T . Then the ciphertext

CT returned is as follows:

Translating values together with in user keys

allow translation between sets ata translating node x as

will be described in the Decrypt function. Note that the
element

is the same as where r denotes the root node. A

variant of the scheme would

be where ¯ C is not included in the ciphertext but is only

released at the discretion of the encrypting user as .

This would restrict decrypting users to only use individual

attributes in the outer set except when explicitly allowed

by the encrypting user by designating translating nodes.

Decrypt(CT, SKu). Here we describe the most

straightforward decryption algorithm without regard to

efficiency. The decryption algorithm is a recursive

algorithm similar to the tree satisfaction algorithm

described in Section 4.

The decryption algorithm first runs the tree satisfaction

algorithm on the access tree with the key structure i.e., T

(A), and stores the results of each of the recursive calls in

the access tree T . That is, each node t in the tree is

associated with a set St of labels that was returned by
Tt(A). If A does not satisfy the tree T then the decryption

algorithm returns ?. Otherwise the decryption algorithm

picks one of the labels, i, from the set returned by T (A)

and calls a recursive function.

DecryptNode(CT, SKu, t, i) on the root node of the tree.

Here CT is the ciphertext

, SKu
is a private key, which is associated with a key structure

denoted by A, t is a node from T , and i is a label denoting

a set of A. Note that the ciphertext CT now contains tree

information that is augmented by the results from T (A).

DecryptNode(CT, SKu, t, i) is defined as follows.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5334 129

If , i.e., node t is a leaf node, then

DecryptNode(CT, SKu, t, i) is defined

as follows. If where then

DecryptNode(CT, SKu, t, i) . If

where then:

Note that set from which the satisfying attribute ai,j was

picked is implicit in the result

 (i.e., indicated by r{u}i). When

, i.e., node t is a non-leaf node,
thenDecryptNode(CT, SKu, t, i) proceeds as follows:

1. Compute Bt which is an arbitrary kt sized set of child

nodes z such that z 2 Bt

only if either (1) label or (2) label

 for some and z is a translating

node. If no such set exists then return .

2. For each node z Bt such that label i Sz call
DecryptNode(CT, SKu, t, i)

and store output in Fz.

3. For each node z Bt such that i0 Sz and

callDecryptNode(CT, SKu, t, i0)

store output in F0 . If then translate F0 to Fz as
follows:

Otherwise, translate to Fz as follows:

4. Compute Ft using polynomial interpolation in the

exponent as follows:

The output of DecryptNode(CT, SKu, r, i) function on the

root node r is stored in Fr. If i = 0 we have Fr = e(g,

g)r{u}·qr(0) = e(g, g)r{u}·s otherwise we have Fr = e(g,

g)r{u} i ·s. If i 6= 0 then we compute F as follows:

Otherwise F = Fr. The decryption algorithm then computes

following:

Note how two elements Ei and Ei0 together with a

translating value at a node t were used to translate

between sets i and i0 at node t in step 3. Similarly, note

how a single element Ei together with a translating value
was used to translate between set i and the outer set. We

note that if then the scheme would become

insecure as colluding users could transitively translate

from inner set i to outer set and then from one key to the

other by using the D elements from their keys. Thus we

need a unique for every level that we need to support.
When using key structures of depth d, translating values,

 , that help translate between sets at depth d or
between a set

at depth d and its parent at depth d − 1 will use . And to

allow translations across multiple levels at a given node,

multiple translating values using different will need
to be released at that node.

 OpenEnc(PP,C,M) → PE: This algorithm returns two

coins b0, b1 as proof PE.

 OpenDec(PP, SK,C,M) → PD: This algorithm

directly returns SK as proof PD since this is the most

persuasive proof.

 Verify(PP,C,M, PE, PD) → {T, F}: To verify PE and
PD, this algorithm first runs Dec(PP, PD,C) and

checks if the output is equal to declared input M.

Then, this algorithm checks PE with correct coins b0,

b1 derived in the decryption process. If

bothrequirements are satisfied, this algorithm returns

T ;otherwise, it returns F.

 DenSetup() → (PP,MSK, PK): This algorithm

runs Setup() and obtains PP. System public key

PK is

and system secret key MSK is

.

 DenKeyGen(MSK, S) → (SK, FK): This algorithm

runs KeyGenand obtains SK for S. Next, this

algorithm picks t′ ∈ZN and generates FK as follows:

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5334 130

 DenEnc(PP, PK,M,M′,A =) → C′: This

algorithm prepares just as the
Enc algorithm does. This algorithm sets up chameleon

hash function CH(・, ・). The chameleon hash

function is determined during encryption. Note that

without the trapdoor, a chameleon hash is just a one-

way hash function. That is, a sender can claim this is

just a normal hash function without any trapdoor.

Output deniable ciphertext C′ will be:

where,

Based on the property of the chameleon hash, the sender
can easily find tb1 and t1−b1 satisfying the above

requirements.

 DenOpenEnc(PP,C′,M′) → P′ E : When the

sendertries to fool the coercer with the pre-determined

fake message, this algorithm returns two coins 1−b1,

1−b2 as its proof P′ E .

 DenOpenDec(PP, SK, FK,C′,M′) → P′ D: This

algorithmdirectly returns FK as proof P′ D

User Revocation: Whenever there is a user to be

invalidated, the system must make sure the invalidated
user cannot access the associated data files any more. One

way to solve this problem is to re-encrypt all the

associated data files used to be accessed by the revoked

user, but we must also confirm that the other users who

still have access privileges to these data files can access

them correctly.We add an attribute expiration-time X to a

user‟s key, which indicates the time until which the key is

considered to be valid. Then the policy linked with data

files can include a check on the attribute expiration-time Y

as a numerical comparison. The update of user‟s key and

re-encryption of data files can be done as follows:

Key Update. Suppose that there is a user u, who is

administrated by the domain authority DAi. DAipreserves

some state information about u‟s key and adds a new value

of expiration-time to u‟s existing key when it wants to

update u‟s key. Then DAicomputes the secret key

components corresponding to the expiration-time attribute

and sends them to u. Transmission of the secret key

components to the user can be accomplished with an out-

of-band channel between DAiand the user. While DAiis

required to maintain some state information about user‟s

key, DAiavoids the need to create and distribute the entire
keys on a frequent basis. This reduces the capacity on

DAiand saves considerable computing resources.

Data Re-encryption. When the data owner wants to re-

encrypt a data file, he changes the value of expiration-time

the attribute in the key policy and computes the new

ciphertext components cyand c‟y, where is the leaf node

on the access tree corresponding to the expiration-time

attribute. Then the data owner sends these new ciphertext

components to the cloud and the cloud service

Definition 6.2 (Bilinear subgroup decision assumption).

Let G be a 2-cancelling bilinear

group generator such that for i = 1; 2 the output groups Gi

and Hi are of prime order pi. We define the following
distribution:

We define the advantage of an algorithm A in solving the

bilinear subgroup decision assumption to be

We say that G satisfies the bilinear subgroup decision

assumption if is a negligible

function of for any polynomial-time algorithm A.

The reason the BSD assumption does not reduce to the

ordinary subgroup decision assumption (with G1;G2

switched) is that in the latter the challenger is not given

generators of both G1 and G2.

With these definitions, we can now state the security

theorem for the generalized Boneh-Sahai- Waters scheme.

The original proof applies in our more general context.

Theorem 6.3. Suppose that G satisfies the subgroup

decision assumption on the right, the bilinear subgroup

decision assumption, and the 3-party Di_e-Hellman

assumptions on the left and right. Then the generalized

Boneh-Sahai-Waters PLBE scheme is secure.

Definition 7 (Deniable CP-ASBE): Our plan-ahead,

bideniable, and multi-distributional CP-ASBE scheme is
composed of the following algorithms:

 Setup(1_) → (PP,MK): This algorithm takes security

parameter _ as input and returns public parameter PP

and system master key MK.

 KeyGen(MK, S) → SK: Given set of attributes S and

MK, this algorithm outputs private key SK.

 Enc(PP,M,T) → CT: This encryption algorithm takes

as input public parameter PP, message M, and access

tree T = (M, _) over the universe of attributes. This

algorithm encrypts M and outputs a ciphertext CT,
which can be decrypted by those who possess an

attribute set that satisfies access tree T. Note that T is

contained in CT.

 Dec(CT,SK) → {M,⊥}: This decryption algorithm
takes as input public parameter PP, private key SK

with its attribute set S, and ciphertext CT with its

access tree T. If S satisfies T, then this algorithm

returns M; otherwise, this algorithm returns ⊥.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5334 131

 OpenEnc(PP,CT,M) → PE: This algorithm is for the

sender to release encryption proof PE for (M,CT).

 OpenDec(PP, SK,CT,M) → PD: This algorithm is for

the receiver to release decryption proof PD for

(M,CT).

 Verify(PP,CT,M, PE, PD) → {T, F}: This algorithm

is used to verify the correctness of PE and PD.

 DenSetup(1_) → (PP,MK, PK): This algorithm takes
security parameter _ as input and returns public

parameters PP, system master key MK, and system

public key PK. PK is known by all system users and is

kept secret to outsiders.

 DenKeyGen(MK, S) → (SK, FK): Given set of

attributes S and MK, this algorithm outputs private

key SK as well as FK for the user, where FK will be

used for generating fake proof later.

 DenEnc(PP, PK,M,M′,T) → CT′: Aside from the

inputs of the normal encryption algorithm, this

deniable encryption algorithm needs public key PK
and fake message M′. The output ciphertext must be

indistinguishable from the output of Enc.

 DenOpenEnc(PP,CT′,M′) → P′ E : This algorithm

isfor the sender to release encryption proof P′

E for fake message M′. The output must be

indistinguishable from the result of OpenEncand

must pass the Verify algorithm.

 DenOpenDec(PP, SK, FK,CT′,M′) → P′ D: This

algorithmis for the receiver to release decryptionproof

P′ D for fake message M′. The output must

beindistinguishable from the result of
OpenDecandmust pass the Verify algorithm.

VIII.CONCLUSION

ASBE‟s capability of assigning multiple values to the

same attribute enables it to solve the user revocation

problem efficiently, which is difficult in CP-ABE. The

revocation problem can be solved easily by assigning

different expiration times. The above desirable feature and

the recursive key structure is implemented by four

algorithms they are , Setup, KeyGen, Encrypt, and

Decrypt:

Setup algorithm (MK, PK) ← Setup (1k): is run by the

trusted authority or the security administrator. The setup

algorithm takes as input a security parameter k and outputs

a master secret key MK and a master public key PK.

Key Generation algorithm (SK) ← Key Gen (MK, ω):

is run by the trusted authority, and takes as input a set of

attributes ω and MK. The algorithm outputs a user secret

key SK associated with the attribute set ω.

Encryption algorithm (CT) ← Encrypt (m, PK, P): is

run by the encryptor. For encryption the input of the

algorithm is a message file m, a master public key PK and

an access control policy P, the output of the algorithm is a

ciphertext CT encrypted under the access control policy P.

Decryption algorithm (m) ← Decrypt (CT, SK): is run

by the decryptor. The input of the algorithm is a ciphertext

CT to be decrypted and a user secret key SK. The output

of the algorithm is a message m, if the attribute set of the

secret key satisfies the access policy P under which the

message was encrypted, or an error message if the

attribute set of the secret key does not satisfies the access

policy P under which the message was encrypted. These

algorithms are essentially similar to those of CP-ABE,

except some extensions to support recursive key structure.
The public key and the master key of ASBE are extended

from CPABE to have components supporting recursive

key structure. The master key is extended by adding a new

secret exponent βd for depth. The generated private keys

are also different in ASBE and CP-ABE. There are

translating components that enable attributes translation

between different key sets. The missing part of ASBE is

the delegation algorithm, which is used in our proposed

scheme to construct the hierarchical structure. We accept

the same four algorithms of ASBE, and extend ASBE by

proposing a new delegation algorithm.

REFERENCES
[1]. A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in

Eurocrypt, 2005, pp. 457–473.

[2]. V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based

encryption for fine-grained access control of encrypted data,” in

ACM Conference on Computer and Communications Security,

2006, pp. 89–98.

[3]. J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy

attribute-based encryption,” in IEEE Symposium on Security

andPrivacy, 2007, pp. 321–334.

[4]. B. Waters, “Ciphertext-policy attribute-based encryption: An

expressive, efficient, and provably secure realization,” in Public

KeyCryptography, 2011, pp. 53–70.

[5]. A. Sahai, H. Seyalioglu, and B. Waters, “Dynamic credentials and

ciphertext delegation for attribute-based encryption,” in Crypto,

2012, pp. 199–217.

